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Abstract. We present some recent developments involving inequalities for

the ADM-mass and capacity of asymptotically flat manifolds with boundary.

New, more general proofs of classic Euclidean estimates are also included. The
inequalities are rigid and valid in all dimensions, and constitute a step towards

proving the Riemannian Penrose inequality in arbitrary dimensions.

1. Introduction

An asymptotically flat manifold is a Riemannian manifold which, outside a
compact set, is diffeomorphic to the complement of a ball in Euclidean space. Fur-
thermore, in the asymptotic coordinates induced by the diffeomorphism, the metric
and its derivatives decay fast enough to the flat metric of Euclidean space.

Asymptotically flat manifolds play an important role in relativity, as they are
the best model for spacelike slices of isolated gravitational systems. Much work has
been done on these types of manifolds, particularly under the extra hypothesis that
they have nonnegative scalar curvature. This requirement corresponds, in physical
terms, to the simpler situation of being a spacelike slice inside a time-symmetric
asymptotically flat spacetime satisfying the dominant energy condition.

Several questions remain open regarding such asymptotically flat manifolds,
especially in high dimensions. Among the two most prominent ones are: (a) the
positive mass theorem, and (b) the Penrose inequality, neither of which is known to
hold, in full generality, in dimensions eight or above. Furthermore, these are among
the most important unanswered questions in all of geometric analysis because of
their implications to related problems.

A special case of asymptotically flat manifolds are those that are also confor-
mally flat. These correspond to manifolds globally conformal to Euclidean space re-
moved a region (possibly empty). Question (a) from above –positive mass theorem–
is known to hold in all dimensions for these manifolds. The proof of this uses the
rather straightforward argument. (See §2). By analogy to this case, Bray and
Iga conjectured in [3] that the answer to (b) –Penrose inequality– should also be
relatively straightforward to prove, in all dimensions, under these hypotheses. Nev-
ertheless, no such proof is known to exist. Partial progress towards proving the
Penrose inequality for conformally flat manifolds has occurred recently. Our goal
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here is to describe these developments in a unified way, sketching some of the proofs
in the literature.

2. Basic setup and motivation

We first introduce some general notions. In what follows (Mn, g) denotes a
Riemannian manifold of dimension n ≥ 3.

Definition. Suppose (Mn, g) as above is a complete, non-compact (with or
without boundary) manifold, and has only one end E . (This assumption is only
for the sake of simplicity.) We say that (M, g) is asymptotically flat if outside a
compact set, it is diffeomorphic to the complement of a ball in Euclidean space, and
in the coordinates given by this diffeomorphism, the metric satisfies the asymptotic
conditions

|g − δ| = O(|x|−p), |∂g| = O(|x|−p−1), |∂2g| = O(|x|−p−2).

Here, δ = δij is the flat metric of Euclidean space, and p > n−2
2 .

A notion of total mass, called the ADM-mass, can be defined for asymptotically
flat manifolds as follows.

Definition (ADM-mass). Let (M, g) be an asymptotically flat manifold. Its
ADM-mass is

m = mADM (g) =
1

2(n− 1)ωn−1
lim
r→∞

∫
Sr

∑
i,j

(∂jgij − ∂igjj)νjdσ0
r .

Here, Sr is a Euclidean coordinate sphere, and dσ0
r is Euclidean surface area.

It is well known that under the above asymptotic conditions, the ADM-mass
is well-defined independently of the asymptotically flat coordinates (cf. [1, 8]).

Definition (CF-manifold). A manifold (M, g) is said to be conformally flat
if it is isometric to (Rn \ Ω, u4/(n−2)δij), where u > 0 is a smooth function defined
outside the smooth (possibly empty) region Ω ⊂ Rn. We say that a manifold (M, g)
is a CF-manifold if it is asymptotically flat, conformally flat, has nonnegative scalar
curvature, u is harmonic outside a compact subset, and u → 1 as |x| → ∞, where
g = u4/(n−2)δij .

The normalization u → 1 at infinity is for simplicity, as we see in the next
section. The condition that u be harmonic at infinity simplifies the calculations
quite a bit, but is not necessary.

Lemma 1 (Schoen-Yau [19]). Let (M, g) be an AF, conformally flat manifold
with nonnegative scalar curvature. Then given any ε > 0, there exists a CF-metric
g0 with nonnegative scalar curvature such that

1− ε ≤ g0(v, v)
g(v, v)

≤ 1 + ε,

for all nonzero vectors v in the tangent space at every point in M , and so that

|m−m0| ≤ ε,
where m and m0 are the ADM masses of (M, g) and (M, g0), respectively.
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The reason for requiring that u be harmonic outside a compact set is the fol-
lowing well known lemma.

Lemma 2. Let (M, g) be a CF-manifold as above. Then u admits the expansion

u(x) = 1 +
m

2
|x|2−n + l.o.t,

where m is the ADM-mass of M .

The proof of this lemma is an easy exercise using spherical harmonics. (See
e.g. §2 of [2].) Notice that because of it, it is desirable to work with metrics that
are harmonically flat near infinity to simplify calculations involving the ADM-mass.
The following lemma follows directly from a result of Schoen and Yau that gives
that AF-manifolds may be approximated by harmonically flat AF-maniolds.

Example. The prototypical example of a CF-manifold, aside from Euclidean
space itself, is the so-called Riemannian Schwarzschild manifold of mass m > 0. It
is defined as the manifold (Rn \ B, u4/(n−2)δij), where B is the Euclidean ball of
radius R = (m/2)1/(n−2) (called Schwarzschild radius), and

u = u(|x|) = 1 +
m

2
|x|2−n.

The following properties of the Riemannian Schwarzschild manifold of mass
m > 0 are well known:

(i) it is asymptotically flat, and scalar flat;
(ii) its ADM-mass is m > 0, as the name suggests;
(iii) the boundary ∂B is minimal;

(iii)’ (Actually, ∂B is totally geodesic since it is fixed by the isometry of (Rn \
{0}, g) given by x 7→ x/|x|2. Here, g is the above metric extended to Rn
minus the origin using the same formula);

(iv) the boundary ∂B is outer area minimizing, and there are no other minimal
hypersurfaces in it;

(v) the area of the boundary ∂B (with respect to the metric g) is exactly
A = ωn−1(2m)(n−1)/(n−2). Equivalently, it satisfies the equality case of
the Riemannian Penrose inequality

m ≥ 1
2

(A/ωn−1)(n−2)/(n−1),

where ωn−1 is the area of the (n− 1)-dimensional unit round sphere.

We are now ready to prove the theorem which motivates the study of CF-
manifolds.

Theorem 3 (Positive Mass Theorem for CF-manifolds). Let (M, g) be a CF-
manifold without boundary. Then m ≥ 0, with equality if and only if the manifold
is Euclidean space.

Proof. Using the above lemma it follows that it suffices to prove the PMT for
metrics that are harmonically flat near infinity. Let g = u4/(n−2)δij . Since (M, g)
has nonnegative scalar curvature we know that ∆u ≤ 0. Integrating −u∆u over
M and applying the divergence theorem gives that m ≥ 0. Equality m = 0 implies
u ≡ 1. �
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Remark 4. The general version of the positive mass theorem (PMT) is the
same as the one above but with ‘CF-manifold’ replaced by ‘AF-manifold with non-
negative scalar curvature.’ The known proof of the (general) positive mass theorem
works for manifolds of dimension less than eight. It was done by Schoen and Yau
in [18] using geometric measure theory and minimal surface techniques. The (gen-
eral) PMT was extended to arbitrary-dimensional asymptotically flat Riemannian
manifolds which are also spin by Witten in [22]; and to asymptotically flat graphs
over Rn inside Rn+1 by Lam [16].

The positive mass theorem has many beautiful applications, as well as a clear
physical meaning. Indeed, it allows us to interpret the ADM mass of an asymptot-
ically flat manifold as its total mass, since the theorem argues that a slice of space-
time with nonnegative energy density has nonnegative total mass. Also, from a
Riemannian-geometry perspective, the theorem is a rigid inequality which provides
with a characterization of Euclidean space as the equality case of the inequality
m ≥ 0. The positive mass theorem in high dimensions remains one of the main
open problems in geometric analysis.

3. Inequalities for the ADM-mass and capacity of CF-manifolds with
minimal boundary

One of the main open problems in geometric analysis is the proof of the Rie-
mannian Penrose inequality in high dimensions. This inequality can be thought of
as a refinement of the PMT for manifolds whose boundary is an outermost minimal
hypersurface. The general conjecture is the following.

Conjecture (Riemannian Penrose Inequality). Let (M, g) be an AF-manifold
with boundary having nonnegative scalar curvature. Let m denote its mass. Assume
that its boundary is an outermost minimal hypersurface of area A. Then

(RPI) m ≥ 1
2

(
A

ωn−1

)n−2
n−1

,

with equality if and only if (M, g) is the Riemannian Schwarzschild manifold (see
the Example in the previous section).

The RPI was first proved in three-dimensions by Huisken and Ilmanen [13] with
the limitation that the term A above refers to the area of any one component of
the boundary, rather than the area of the boundary as a whole. This was done
using Geroch’s monotonicity formula for the Hawking mass under inverse mean
curvature flow of [10]. Geroch’s formula relies heavily on Gauss-Bonnet so it does
not generalize to higher dimensions.

A different approach to proving the RPI was given by Bray in [2]. He was able
to prove the full RPI in dimension three (i.e. the case of A above denoting the area
of the whole boundary) using a conformal flow of the metric. Bray’s argument was
extended to dimensions less than eight by Bray-Lee in [5] (with rigidity only for
spin manifolds). Bray-Lee’s argument cannot be directly extended to dimensions
eight and above since: (i) it uses techniques from geometric measure theory, and
it is known that singularities appear inside the area-minimizing hypersurfaces used
in the proof; and (ii) it uses the PMT, which remains unproved (in full generality)
in high dimensions.
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In view of the relatively straightforward proof of the PMT in the CF-case,
Bray and Iga conjectured in [3] that the RPI should also hold for CF-manifolds.
Furthermore, they assert that one should be able to prove this version of the RPI, in
all dimensions, using classical techniques alone. In that work, the following theorem
is proved using classical PDE techniques for dimension three.

Theorem 5 (Bray-Iga [3]). Suppose (M3, g) is a CF-manifold where M =
R3 \ {0} and g = u4δij. Assume u has a pole at x = 0, and that every smooth
surface Σ ⊂ R3 which bounds an open set containing the origin has g-area greater
than or equal to A. Then

m ≥ λ
√
A,

for some universal constant λ > 0.

An important tool developed by Bray for proving the RPI is the so-called
mass-capacity inequality. It uses the notion of capacity of the boundary of an
AF-manifold, which is defined as follows.

Definition (Capacity). Let (Mn, g) be an AF manifold with boundary Σ.
The capacity of Σ is the quantity

Capg(Σ) = inf
ϕ∈M1

0

{
1

(n− 2)ωn−1

∫
M

|∇gϕ|2gdVg
}
,

where the infimum is taken over the set M1
0 of all smooth functions on M which

are exactly 0 on Σ and approach 1 at infinity in the AF end of M .

Remark 6. Changing the boundary conditions we could also define (for a 6= b):

Cap(a,b)
g (Σ) = inf

ϕ∈Mb
a

{
1

(n− 2)ωn−1

∫
M

|∇gψ|2gdVg
}
,

where the infimum is now taken over the set M b
a of all smooth functions on M which

are exactly a on Σ and approach b at infinity in the AF end of M . Since the map
ψ 7→ a−ψ

a−b defines a bijection between M b
a → M1

0 which scales the integral of the

square of the gradient by a constant, it follows that Cap(a,b)
g (Σ) = (a−b)2Capg(Σ).

(We will use this fact in the proof of part (IV) of Theorem 12 below.)

The mass-capacity inequality states the following.

Theorem 7 (Bray [2]). Let (M3, g) be an AF manifold with nonnegative scalar
curvature and minimal boundary Σ. Then the ADM mass satisfies

m ≥ Capg(Σ),

with equality if and only if the manifold is isometric to the Riemannian Schwarzschild
manifold of mass m.

The mass-capacity inequality was proved by Bray in [2] using the PMT and the
reflection argument of [7]. A proof that is valid for CF-manifolds in all dimension
was given by the author in [20]. The argument is based on extending Bray’s original
proof. In order to do that one first shows that CF-manifolds are spin, and then
adapts Bray’s proof using Witten’s version of the PMT for spin manifolds.

It is worth pointing out that related theorem to the mass-capacity inequality
of above was proved by Bray and Miao in [6]. There, the authors find an upper
bound for the capacity of the boundary of a three-dimensional AF-manifold with



6 FERNANDO SCHWARTZ

nonnegative scalar curvature in terms of a function of the Hawking mass of the
boundary.

3.1. Volumetric Penrose inequality. Bray’s proof of the mass-capacity in-
equality uses the positive mass theorem. Actually, the only place in Bray’s work of
[2] where the PMT is used is to prove this inequality. Recently, Freire and the author
gave a proof of this inequality for the CF-case which does not rely on the PMT.
(See (a) of Theorem 11 below.) We present an application of the mass-capacity
inequality to prove the “volumetric” Penrose inequality.

Theorem 8 (Schwartz [20]). Let (Mn, g), be an CF-manifold with g-minimal
boundary Σ = ∂Ω. Assume further that Σ is mean-convex with respect to the
Euclidean metric. Then the ADM mass of M satisfies

m ≥
(
V0

βn

)n−2
n

,

where V0 is the Euclidean volume of Ω and βn is the volume of the round unit ball
in Rn.

In order to prove the theorem we first prove the following useful fact.

Lemma 9 (Schwartz [20]). Let (M, g) as in Theorem 8, with g = u4/(n−2)δij.
Then u ≥ 1.

Proof. Recall that the transformation law for the scalar curvature under
conformal changes of the metric is given by Rg = 4(n−1)

n−2 u−(n+2)/(n−2)(−∆0 +
n−2

4(n−1)R0)u, where ∆0 is the Euclidean Laplacian and R0 is the Euclidean scalar
curvature, namely R0 ≡ 0. Since we assume that Rg ≥ 0, it follows that u is super-
harmonic on M . Therefore, u achieves its minimum value at either infinity or at
the boundary ∂Ω. At infinity u goes to one. We now show that at the boundary it
does not achieve its minimum, and so it must be everywhere greater or equal than
one.
Claim. u does not achieve its minimum on the boundary ∂Ω.
From hypothesis, the boundary of M is a minimal hypersurface. This is, the mean
curvature of the boundary of M is zero with respect to the metric g = u4/(n−2)δij .
Now, the transformation law for the mean curvature under the conformal change
of the metric g = u4/(n−2)δij is given by hg = 2

n−2u
−n/(n−2)(∂ν + (n−2)

2 h0)u, where
h0 is the Euclidean mean curvature and ν is the outward-pointing normal. Since
we have assumed that the boundary of Ω is mean convex, i.e. that h0 > 0, it
follows that ∂νu < 0 on all of the boundary of Ω. This way, u decreases when we
move away from the boundary towards the interior of M . From this it follows that
u cannot achieve its minimum on the boundary. This proves the claim, and the
Lemma follows. �

Another ingredient we need to prove Theorem 8 is a classical fact about spher-
ical rearrangements by Pólya and Szegö [17]. (See also [21], [12].) The idea is the
following. Let u be a function in W 1,p(Rn). Its spherical decreasing rearrange-
ment, u∗(x) ≡ u∗(|x|), is the unique radially symmetric function on Rn which
is decreasing on |x|, and so that the Lebesgue measure of the super-level sets of
u∗ equals the Lebesgue measure of the super-level sets of u. More precisely, u∗

is defined as the unique decreasing spherically symmetric function on Rn so that
µ{u ≥ K} = µ{u∗ ≥ K} for all K ∈ R.
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Theorem 10 ( Pólya-Szegö [17]). Spherical decreasing rearrangement preserves
Lp norms and decreases W 1,p norms.

Proof of Theorem 8. Bray’s mass-capacity theorem (and its extension by
the author in [20]) gives m ≥ Capg(Σ). To estimate the capacity we use the
following argument. We first note that, without loss of generality, we may assume
that the functions ϕ in the definition of the capacity satisfy 0 ≤ ϕ ≤ 1. Consider
any such function and extend it to a function ϕ̃ defined on all of Rn by setting
it to be exactly zero inside Ω. The resulting function ϕ̃ is Lipschitz and satisfies∫

Rn\Ω |∇ϕ|
2dV =

∫
Rn |∇ϕ̃|

2dV, where all the integrands are with respect to the
Euclidean metric. Consider the spherical decreasing rearrangement of ϕ̃ given by
(ϕ̃)∗. By the Pólya-Szegö theorem we have that

∫
Rn |∇ϕ̃|

2dV ≥
∫

Rn |∇(ϕ̃)∗|2dV.
We deduce

(3.1)
∫

Rn\Ω
|∇ϕ|2dV ≥

∫
Rn
|∇(ϕ̃)∗|2dV.

A standard calculation shows that whenever u ≥ 1 we get
∫
M
|∇gϕ|2gdVg ≥∫

M
|∇ϕ|2dV. On the other hand, notice that (ϕ̃)∗ is exactly zero on the ball BR,

where R = (V0/βn)1/n is the radius of the ball of volume V0 = |Ω|. It follows by
the definition of Euclidean capacity that∫

Rn
|∇(ϕ̃)∗|2dV =

∫
Rn\BR

|∇(ϕ̃)∗|2dV ≥ CapEucl(Σ).

These last two inequalities together with equation (3.1) give that
∫
M
|∇gϕ|2gdVg ≥∫

Rn\BR |∇(ϕ̃)∗|2dV. Taking infimum over ϕ one obtains Capg(Σ) ≥ CapEucl(BR).
An easy calculation gives that this last quantity is exactly (V0/βn)(n−2)/n. This
ends the proof. �

3.2. Sharp mass-capacity and volumetric Penrose inequalities. Theo-
rem 8 has two limitations: on the one hand, the volumetric Penrose inequality is
not sharp nor does it contain a rigidity statement; on the other hand, the lower
bound for the ADM mass it gives is in terms of an Euclidean volume.

In a recent joint work with Freire [9], the author was able to sharpen Theorem 8
to a rigid inequality which also contains a new proof of the mass-capacity inequality
for conformally-flat manifolds that does not use the positive mass theorem. The
precise statement is the following.

Theorem 11 (Freire-Schwartz [9]). Let (M, g) be a CF-manifold as above with
u∂M ≥ 2, and let m denote its ADM mass.

(a) Mass-capacity inequality: m ≥ Capg(Σ). Equality holds if and only if
g is the Riemannian Schwarzschild metric.

(b) Sharp Volumetric Penrose inequality: m ≥ 2 (V0/βn)(n−2)/n
, where

V0 is the Euclidean volume of Ω, and βn is the volume of the Euclidean unit
n-ball. Equality holds if and only if g is the Riemannian Schwarzschild
metric.

The requirement u∂M ≥ 2 in the above Theorem is for technical reasons. Ac-
tually, the Theorem also holds whenever u is less than 2 on the boundary provided
it does not oscillate much. We refer the reader to the paper [9] for more details.
The proof Theorem 11 relies only on classical variational and PDE methods, as well
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as on Huisken-Ilmanen’s high-dimensional inverse mean curvature flow [14]. This
is the only application of Huisken-Ilmanen’s high-dimensional IMCF to date. The
theorem follows from the following technical result, as we see below.

Theorem 12 (Freire-Schwartz [9]). Let n ≥ 3 and Ω ⊂ Rn be a smoothly
bounded domain with boundary Σ = ∂Ω, not necessarily connected. Let (M, g) be
isometric to a conformally flat metric gij = u

4
n−2 δij on Ωc which is asymptotically

flat with ADM mass m. (Here u > 0 and u→ 1 towards infinity.) Assume further
that (M, g) has non-negative scalar curvature Rg ≥ 0. Then

(I) If Σ is Euclidean mean-convex (H0 > 0) and g-minimal (Hg = 0), then

C0(Σ) < Cg(Σ) ≤ C0(Σ) +
m

2
.

Equality occurs in the second inequality if and only if u is harmonic.

(II) (Euclidean estimate.) Assume H0 > 0 on Σ. Then:

C0(Σ) ≤ 1
(n− 1)ωn−1

∫
Σ

H0dσ0.

Equality holds if and only if Σ is a round sphere.

(III) Let α = minΣ u. Under the same assumptions on Σ as in (I), we have:

1
(n− 1)ωn−1

∫
Σ

H0dσ0 ≤
m

α
.

Equality holds if and only if u is harmonic and constant on Σ (and, in
this case, α ≥ 2.)(Note that by Lemma 9, α > 1 always.)

(IV) Under the same assumptions on Σ as in (I), assume further α ≥ 2. Then

C0(Σ) ≤ m

2
.

(V) (Euclidean estimate.) Assume H0 > 0 on Σ, and Σ is outer-minimizing
in Rn with area A. Then:

1
(n− 1)ωn−1

∫
Σ

H0dσ0 ≥
(

A

ωn−1

)n−2
n−1

.

Equality holds if and only if Σ is a round sphere.

We prove only parts (II), (III) and (V) here. Part (IV) follows directly from
(II) and (III), but for the case of α < 2 with small oscillation more work is required.
The full proof of the above theorem in its most general form can be found in [9].

Proof of Theorem 12 part (II). We use a modification of the method of
Bray-Miao described in [6]. First, we get an upper bound for Cap0(Σ) using test
functions of the form ϕ = f ◦φ, where φ ∈ C1(Ωc,R+) is a (soon to be determined)
proper function vanishing on Σ = Σ0 whose level sets define a foliation (Σt)t≥0 of
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Ωc, and f : R → R is any function that satisfies f(0) = 0, f(∞) = 1. As noted in
[6], we have

(3.2) (n− 2)ωn−1Cap0(Σ) ≤ inf
{∫ ∞

0

(f ′)2w(t)dt : f(0) = 0, f(∞) = 1
}
,

where w(t) :=
∫

Σt
|∇0φ|dσ0

t > 0.

For the sake of simplicity let us omit the subscript/superscript ‘0’ for the re-
mainder of the proof. Moving away from the method of [6], we note that the
one-dimensional variational problem (3.2) is easily solved.

Claim. Provided w−1 ∈ L1(0,∞), the infimum of the right hand side of (3.2)
equals I−1 = (

∫∞
0

1
w(s)ds)

−1, and is attained by the function f(t) = 1
I
∫ t

0
w−1(s)ds.

Proof. This follows from

1 =
∫ ∞

0

f ′dt =
∫ ∞

0

f ′w1/2w−1/2dt ≤
(∫ ∞

0

(f ′)2w(t)dt
)1/2(∫ ∞

0

w−1(t)dt
)1/2

.

�

Consider the foliation (Σt)t≥0 defined by the level sets of the function given by
Huisken and Ilmanen’s inverse mean curvature flow [13, 14] in Ωc ⊂ Rn. We recall
the summary given in [6] (which holds in all dimensions):

Theorem 13 (Huisken-Ilmanen, [13,14]).
• There exists a proper, locally Lipschitz function φ ≥ 0 on Ωc, φ|Σ = 0.

For t > 0, Σt = ∂{φ ≥ t} and Σ′t = ∂{φ > t} define increasing families
of C1,α hypersurfaces;

• The hypersurfaces Σt (resp.Σ′t) minimize (resp. strictly minimize) area
among surfaces homologous to Σt in {φ ≥ t} ⊂ Ωc. The hypersurface
Σ′ = ∂{φ > 0} strictly minimizes area among hypersurfaces homologous
to Σ in Ωc.

• For almost all t > 0, the weak mean curvature of Σt is defined and equals
|∇φ|, which is positive a.e. on Σt.

From Theorem 13 and the Claim from above it follows that

(3.3) (n− 2)ωn−1C0(Σ) ≤
(∫ ∞

0

w−1(t)dt
)−1

, where w(t) :=
∫

Σt

Hdσt.

Lemma 14 ([9]). Consider the foliation {Σt} given by IMCF in Ωc ⊂ Rn as
above. Then ∫

Σt

Hdσ ≤
(∫

Σ0

Hdσ

)
e
n−2
n−1 ·t, for t ≥ 0.

Remark 15. Note that equality holds in the above inequality for the foliation
by IMCF outside a sphere, which is given by Σt = ∂BR(t) ⊂ Rn, where R(t) = e

t
n−1 .

Proof of Lemma 14. From [13] we have that, so long as the evolution re-
mains smooth,

(3.4)
d

dt

(∫
Σt

Hdσt

)
=
∫

Σt

(
H − |A|

2

H

)
dσt ≤

n− 2
n− 1

∫
Σt

Hdσt,



10 FERNANDO SCHWARTZ

where A denotes the second fundamental form, and the second inequality follows
from

(3.5) H − |A|
2

H
− n− 2
n− 1

H =
1

(n− 1)H
(H2 − (n− 1)|A|2) ≤ 0.

(Note that equality occurs in this last inequality if and only if each connected
component of Σt is a sphere.) It is easy to see that the inequalities extend through
countably many jump times since the total mean curvature does not increase at
the jump times. �

By straightforward integration, Lemma 14 implies:(∫ ∞
0

w−1(t)dt
)−1

≤ n− 2
n− 1

∫
Σ

Hdσ.

Together with equation (3.3) this gives (n− 1)ωn−1C0(Σ) ≤
∫

Σ
Hdσ, as claimed in

part (II) of the Theorem.

Rigidity. From Remark 15 it follows that the inequality of part (II) is an equality
whenever Σ is a round sphere. On the other hand, if equality holds in part (II), it
follows that ∫

Σt

Hdσ =
(∫

Σ0

Hdσ

)
e
n−2
n−1 ·t for a.e. t ≥ 0,

and therefore H2 = (n − 1)|A|2 on Σt, for a.e. t ≥ 0. This implies Σt is a disjoint
union of round spheres, for a.e. t ≥ 0. For a solution of inverse mean curvature
flow in Rn, this is only possible if Σt is, in fact, a single round sphere for every t.
(See e.g. the Two Spheres Example 1.5 of [13].) This ends the poof of (II). �

Proof of Theorem 12 part (III). The transformation law for the mean
curvature under conformal deformations is

Hg = u−
2

n−2

(
H0 +

2(n− 1)
n− 2

uν
u

)
.

This together with the divergence theorem gives that∫
Bρ\Ω

∆0udV0 =
∫
Sρ

urdσ
0
ρ −

∫
Σ

uνdσ0

= −mωn−1
n− 2

2
+O(ρ−1) +

n− 2
2(n− 1)

∫
Σ

H0udσ0.

Taking the limit ρ→∞ we obtain

(3.6) m = − 2
(n− 2)ωn−1

∫
Ωc

∆0udV0 +
1

(n− 1)ωn−1

∫
Σ

H0udσ0.

Since ∆0u ≤ 0 on Ωc and u ≥ α on Σ, this gives the inequality in (III).

Rigidity. For the rigidity statement of (III) we only need to prove one direction
since (clearly) for the Riemannian Schwarzschild manifold, the above inequalities
are all equalities. Here we may not assume that u is harmonic at infinity (although
this will follow from the claim below).

If equality holds in (III), we have that

(3.7)
∫

Σ

H0dσ0 = (n− 1)ωn−1
m

α
.
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Claim. u is harmonic on Ωc, and is (the same) constant on (all components
of) Σ.

Proof. By equations (3.6) and (3.7) it follows that u is harmonic on Ωc. Note
that since the inequality in (III) is obtained from equation (3.6) by replacing u
by its minimum on Σ, it follows that, in the case of equality in (III), u equals its
minimum on Σ, i.e. u|Σ ≡ minΣ u = α. �

Claim. α ≥ 2.

Proof. From the previous claim ∆0u = 0, so

0 =
∫

Ωc
u∆0udV0 = −

∫
Ωc
|∇0u|2dV0 −

m

2
ωn−1(n− 2)−

∫
Σ

uuνdσ0.

Also, from that claim u|Σ ≡ α, so we know u is the optimal function for C(α,1)
0 (Σ)

(cf. Remark 2). Furthermore, using Remark 3 it follows that
∫

Ωc
|∇0u|2dV0 =

(n− 2)ωn−1(α− 1)2C0(Σ). Combining this with the above equation we obtain

(n− 2)ωn−1(α− 1)2C0(Σ) = −m
2
ωn−1(n− 2) +

n− 2
2(n− 1)

α2

∫
Σ

H0dσ0.

We now use equation (3.7) to substitute the last term in the above equation.
We get

(3.8) (α− 1)C0(Σ) =
m

2
.

It is easy to see that equations (3.7), (3.8), combined with the inequality in
(II), imply α ≥ 2. �

This concludes the proof of (III). �

Proof of Theorem 12 part (V). Recall that a hypersurface Σ = ∂Ω ⊂ Rn
is called outer-minimizing if whenever Ω′ is a domain with Ω′ ⊃ Ω then |∂Ω′| ≥
|Σ|. (An example of such a hypersurface is given by the boundary of a collection
of sufficiently far-apart convex bodies in Rn.) Let us denote by |Σt| the area of the
evolving hypersurface Σt moving by IMCF with initial condition Σ0 ≡ Σ. Then, by
Lemma 1.4 of [13], one has |Σt| = et|Σ| for all t ≥ 0, provided Σ is outer-minimizing.

Now, from Lemma 14 and the fact that e(n−2
n−1 )t = (|Σt|/|Σ|)

n−2
n−1 , we have that

the function

f(t) := |Σt|−
n−2
n−1

∫
Σt

Hdσt

is non-increasing along IMCF in Rn. By a known property of Euclidean IMCF,
for t large enough Σt is arbitrarily close to a round sphere, and hence f(t) →
(n − 1)ω1/(n−1)

n−1 as t → ∞. This proves the inequality in (V), since f(0) =
|Σ|−(n−2)/(n−1)

∫
Σ
Hdσ.

Rigidity. From Remark 15 it follows that the inequality of part (V) is an equality
whenever Σ is a round sphere. On the other hand, if the inequality in (V) were an
equality, we have f(∞) = f(0), so f(t) ≡ f(0) for all t since f is non-increasing.
This implies

∫
Σt
Hdσt = cet(n−2)/(n−1), and inequality (3.4) becomes an equality.

Thus, we have reduced rigidity here to the case of rigidity of part (II). �
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4. Euclidean estimates

An interesting consequence of the work [9] (which is parts (II) and (V) of
Theorem 12 above) is that we have obtained new proofs of the following classical
Euclidean estimates under weaker hypotheses.

Theorem 16 (Freire-Schwartz [9]). Let Ω ⊂ Rn be a smooth bounded domain
(not necessarily connected) with mean-convex boundary Σ = ∂Ω. Denote by V0 its
volume, and by A0, H0 > 0 the area and mean curvature of Σ, respectively. Then

(a) Polya-Szegö inequality:∫
Σ

H0dσ0 ≥ (n− 1)ωn−1Cap0(Σ),

with equality achieved if and only if Ω is a round ball.
(b) Aleksandrov-Fenchel inequality: Assume further that Σ is outer-

minimizing. Then∫
Σ

H0dσ0 ≥ (n− 1)ωn−1 (A0/ωn−1)(n−2)/(n−1)
,

with equality achieved if and only if Ω is a round ball.

The novelty in Theorem 16 is that it applies to many new cases and in high
dimensions, and the case of equality is fully characterized. Indeed, both the Polya-
Szegö and the Aleksandrov-Fenchel inequalities were originally proved for convex
hypersurfaces Ω ⊂ R3. Guan-Li [11] generalized (b) for mean-convex star-shaped
domains. Guan-Li’s result, like the original version, requires Ω to be, topologically,
a ball. Our version allows for more topological types. Indeed, it is easy to see that
handlebodies (and disjoint unions of them) may be constructed to be mean-convex
and outermost.

An important application of Theorem 16 is to strengthen Lam’s proof of the
Riemannian Penrose inequality for asymptotically flat graphs [16]. Part (b) of
Theorem 16 can be used as-is to improve Lam’s result replacing “convex bound-
ary components” by the more general “Euclidean mean-convex, outer minimizing
boundary components” in his proof of the inequality.

Another possible application of the above techniques is to use them for prov-
ing the conformally flat case of a Riemannian Penrose inequality conjectured by
Bray in [4] for manifolds containing both closed minimal hypersurfaces and zero
area singularities. Partial work on this direction was carried out by Jauregui [15]
motivated by the work of the author in [20].
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[17] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Math-

ematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951.

[18] R. Schoen and S.-T. Yau, On the proof of the positive mass conjecture in general relativity,
Comm. Math. Phys. 65 (1979), no. 1, 45–76.

[19] R. Schoen and S. T. Yau, Proof of the positive mass theorem. II, Comm. Math. Phys. 79

(1981), no. 2, 231–260.
[20] F. Schwartz, A Volumetric Penrose Inequality for Conformally Flat Manifolds, Ann. Henri
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